All the material presented here, to the extent it is original, is available under CC-BY-SA.
Source files (.Rmd) are found here: https://github.com/edzer/UseR2020
For the exercises it is best to install a fresh copy of stars
, using
if (!require(remotes))
install.packages("remotes")
remotes::install_github("r-spatial/stars")
and to install starsdata
, which is about 1 Gb in size (don't forget to remove afterwards):
install.packages("starsdata", repos = "https://gis-bigdata.uni-muenster.de/pebesma", type = "source")
data.frame
s) data cubes?RasterLayer
, or single-band GeoTIFF) a data cube?library(stars)
## Loading required package: abind
## Loading required package: sf
## Linking to GEOS 3.8.0, GDAL 3.0.4, PROJ 7.0.0
Panel data are time series data collected for a set of subjects (persons, companies, countries etc). That makes them (i) multidimensional, and (ii) spatiotemporal, since the subjects are typically spatial entities (though they might move).
library(ggplot2)
data(Produc, package = "plm")
head(Produc)
## state year region pcap hwy water util pc gsp emp
## 1 ALABAMA 1970 6 15032.67 7325.80 1655.68 6051.20 35793.80 28418 1010.5
## 2 ALABAMA 1971 6 15501.94 7525.94 1721.02 6254.98 37299.91 29375 1021.9
## 3 ALABAMA 1972 6 15972.41 7765.42 1764.75 6442.23 38670.30 31303 1072.3
## 4 ALABAMA 1973 6 16406.26 7907.66 1742.41 6756.19 40084.01 33430 1135.5
## 5 ALABAMA 1974 6 16762.67 8025.52 1734.85 7002.29 42057.31 33749 1169.8
## 6 ALABAMA 1975 6 17316.26 8158.23 1752.27 7405.76 43971.71 33604 1155.4
## unemp
## 1 4.7
## 2 5.2
## 3 4.7
## 4 3.9
## 5 5.5
## 6 7.7
ggplot(Produc) + geom_raster(aes(y = state, x = year, fill = pcap))
this plot shows the raw pcap
(public capital stock) values, which mainly demonstrates that large states are large. Normalizing them by dividing through the temporal means, we see more structure:
(s = st_as_stars(Produc, y_decreasing = FALSE))
## stars object with 2 dimensions and 9 attributes
## attribute(s):
## region pcap hwy water
## Min. :1.000 Min. : 2627 Min. : 1827 Min. : 228.5
## 1st Qu.:3.000 1st Qu.: 7097 1st Qu.: 3858 1st Qu.: 764.5
## Median :5.000 Median : 17572 Median : 7556 Median : 2266.5
## Mean :4.958 Mean : 25037 Mean :10218 Mean : 3618.8
## 3rd Qu.:7.000 3rd Qu.: 27692 3rd Qu.:11267 3rd Qu.: 4318.7
## Max. :9.000 Max. :140217 Max. :47699 Max. :24592.3
## util pc gsp emp
## Min. : 538.5 Min. : 4053 Min. : 4354 Min. : 108.3
## 1st Qu.: 2488.3 1st Qu.: 21651 1st Qu.: 16502 1st Qu.: 475.0
## Median : 7008.8 Median : 40671 Median : 39987 Median : 1164.8
## Mean :11199.5 Mean : 58188 Mean : 61014 Mean : 1747.1
## 3rd Qu.:11598.5 3rd Qu.: 64796 3rd Qu.: 68126 3rd Qu.: 2114.1
## Max. :80728.1 Max. :375342 Max. :464550 Max. :11258.0
## unemp
## Min. : 2.800
## 1st Qu.: 5.000
## Median : 6.200
## Mean : 6.602
## 3rd Qu.: 7.900
## Max. :18.000
## dimension(s):
## from to offset delta refsys point values x/y
## state 1 48 NA NA NA NA ALABAMA,...,WYOMING [x]
## year 1 17 1986 -1 NA NA NULL [y]
s = st_apply(s, 1, function(x) x/mean(x)) %>%
st_set_dimensions(names = c("year", "state"))
s
## stars object with 2 dimensions and 9 attributes
## attribute(s):
## region pcap hwy water
## Min. :1 Min. :0.6705 Min. :0.6181 Min. :0.5294
## 1st Qu.:1 1st Qu.:0.9327 1st Qu.:0.9646 1st Qu.:0.8626
## Median :1 Median :1.0146 Median :1.0088 Median :0.9968
## Mean :1 Mean :1.0000 Mean :1.0000 Mean :1.0000
## 3rd Qu.:1 3rd Qu.:1.0644 3rd Qu.:1.0413 3rd Qu.:1.1286
## Max. :1 Max. :1.4160 Max. :1.1928 Max. :1.6239
## util pc gsp emp
## Min. :0.5385 Min. :0.6231 Min. :0.6215 Min. :0.6055
## 1st Qu.:0.9236 1st Qu.:0.8718 1st Qu.:0.8921 1st Qu.:0.9065
## Median :1.0178 Median :1.0041 Median :1.0012 Median :1.0155
## Mean :1.0000 Mean :1.0000 Mean :1.0000 Mean :1.0000
## 3rd Qu.:1.0727 3rd Qu.:1.1204 3rd Qu.:1.0939 3rd Qu.:1.0920
## Max. :1.7289 Max. :1.4786 Max. :1.6435 Max. :1.4798
## unemp
## Min. :0.4340
## 1st Qu.:0.7989
## Median :0.9633
## Mean :1.0000
## 3rd Qu.:1.1732
## Max. :1.9416
## dimension(s):
## from to offset delta refsys point values
## year 1 17 NA NA NA NA NULL
## state 1 48 NA NA NA NA ALABAMA,...,WYOMING
pr = as.data.frame(s)
head(pr)
## year state region pcap hwy water util pc gsp
## 1 1 ALABAMA 1 1.099395 1.061091 1.166170 1.123685 1.220994 1.269043
## 2 2 ALABAMA 1 1.083229 1.050617 1.137907 1.104474 1.202354 1.228148
## 3 3 ALABAMA 1 1.073425 1.042153 1.128882 1.093014 1.177764 1.182770
## 4 4 ALABAMA 1 1.065874 1.036919 1.126735 1.081551 1.166810 1.107454
## 5 5 ALABAMA 1 1.065665 1.040853 1.119124 1.078759 1.149528 1.057200
## 6 6 ALABAMA 1 1.065680 1.038889 1.120675 1.080527 1.119022 1.077569
## emp unemp
## 1 1.164437 1.217836
## 2 1.135630 1.105994
## 3 1.104277 1.366959
## 4 1.057407 1.739766
## 5 1.044436 1.739766
## 6 1.072367 1.366959
ggplot(pr) + geom_raster(aes(y = state, x = year, fill = pcap))
We can also match the state names to state geometries:
library(maps)
states.m = map('state', plot=FALSE, fill=TRUE)
#IDs <- sapply(strsplit(states.m$names, ":"), function(x) x[1])
st = st_as_sf(states.m)[-8,] # deselect D.C., not in Produc
match(tolower(st_get_dimension_values(s, "state")), sub(" ", "_", st$ID))
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
## [26] 26 27 28 29 30 31 32 33 34 35 36 37 38 39 NA 41 42 43 44 45 46 47 48
this indicates that we do not have to reorder the states... then we can simply set them:
(s_sf = st_set_dimensions(s, "state", values = st_geometry(st)))
## stars object with 2 dimensions and 9 attributes
## attribute(s):
## region pcap hwy water
## Min. :1 Min. :0.6705 Min. :0.6181 Min. :0.5294
## 1st Qu.:1 1st Qu.:0.9327 1st Qu.:0.9646 1st Qu.:0.8626
## Median :1 Median :1.0146 Median :1.0088 Median :0.9968
## Mean :1 Mean :1.0000 Mean :1.0000 Mean :1.0000
## 3rd Qu.:1 3rd Qu.:1.0644 3rd Qu.:1.0413 3rd Qu.:1.1286
## Max. :1 Max. :1.4160 Max. :1.1928 Max. :1.6239
## util pc gsp emp
## Min. :0.5385 Min. :0.6231 Min. :0.6215 Min. :0.6055
## 1st Qu.:0.9236 1st Qu.:0.8718 1st Qu.:0.8921 1st Qu.:0.9065
## Median :1.0178 Median :1.0041 Median :1.0012 Median :1.0155
## Mean :1.0000 Mean :1.0000 Mean :1.0000 Mean :1.0000
## 3rd Qu.:1.0727 3rd Qu.:1.1204 3rd Qu.:1.0939 3rd Qu.:1.0920
## Max. :1.7289 Max. :1.4786 Max. :1.6435 Max. :1.4798
## unemp
## Min. :0.4340
## 1st Qu.:0.7989
## Median :0.9633
## Mean :1.0000
## 3rd Qu.:1.1732
## Max. :1.9416
## dimension(s):
## from to offset delta refsys point
## year 1 17 NA NA NA NA
## sfc 1 48 NA NA WGS 84 FALSE
## values
## year NULL
## sfc MULTIPOLYGON (((-87.46201 3...,...,MULTIPOLYGON (((-109.0511 4...
# plot a single time slice:
(s_sf_y1 = s_sf[,1])
## stars object with 2 dimensions and 9 attributes
## attribute(s):
## region pcap hwy water util
## Min. :1 Min. :0.9677 Min. :0.9235 Min. :1.012 Min. :0.9296
## 1st Qu.:1 1st Qu.:1.0470 1st Qu.:1.0195 1st Qu.:1.162 1st Qu.:1.0174
## Median :1 Median :1.0911 Median :1.0613 Median :1.241 Median :1.0887
## Mean :1 Mean :1.1183 Mean :1.0654 Mean :1.249 Mean :1.1374
## 3rd Qu.:1 3rd Qu.:1.1593 3rd Qu.:1.1196 3rd Qu.:1.306 3rd Qu.:1.2134
## Max. :1 Max. :1.4160 Max. :1.1928 Max. :1.624 Max. :1.7289
## pc gsp emp unemp
## Min. :0.9806 Min. :0.9794 Min. :1.012 Min. :0.5657
## 1st Qu.:1.1667 1st Qu.:1.1610 1st Qu.:1.115 1st Qu.:0.8593
## Median :1.2175 Median :1.2304 Median :1.168 Median :1.0205
## Mean :1.2411 Mean :1.2426 Mean :1.181 Mean :1.0569
## 3rd Qu.:1.3299 3rd Qu.:1.3263 3rd Qu.:1.250 3rd Qu.:1.2191
## Max. :1.4786 Max. :1.6435 Max. :1.480 Max. :1.8478
## dimension(s):
## from to offset delta refsys point
## year 1 1 NA NA NA NA
## sfc 1 48 NA NA WGS 84 FALSE
## values
## year NULL
## sfc MULTIPOLYGON (((-87.46201 3...,...,MULTIPOLYGON (((-109.0511 4...
# drop the obsolete dimension:
(s_sf_y1 = adrop(s_sf_y1))
## stars object with 1 dimensions and 9 attributes
## attribute(s):
## region pcap hwy water util
## Min. :1 Min. :0.9677 Min. :0.9235 Min. :1.012 Min. :0.9296
## 1st Qu.:1 1st Qu.:1.0470 1st Qu.:1.0195 1st Qu.:1.162 1st Qu.:1.0174
## Median :1 Median :1.0911 Median :1.0613 Median :1.241 Median :1.0887
## Mean :1 Mean :1.1183 Mean :1.0654 Mean :1.249 Mean :1.1374
## 3rd Qu.:1 3rd Qu.:1.1593 3rd Qu.:1.1196 3rd Qu.:1.306 3rd Qu.:1.2134
## Max. :1 Max. :1.4160 Max. :1.1928 Max. :1.624 Max. :1.7289
## pc gsp emp unemp
## Min. :0.9806 Min. :0.9794 Min. :1.012 Min. :0.5657
## 1st Qu.:1.1667 1st Qu.:1.1610 1st Qu.:1.115 1st Qu.:0.8593
## Median :1.2175 Median :1.2304 Median :1.168 Median :1.0205
## Mean :1.2411 Mean :1.2426 Mean :1.181 Mean :1.0569
## 3rd Qu.:1.3299 3rd Qu.:1.3263 3rd Qu.:1.250 3rd Qu.:1.2191
## Max. :1.4786 Max. :1.6435 Max. :1.480 Max. :1.8478
## dimension(s):
## from to offset delta refsys point
## sfc 1 48 NA NA WGS 84 FALSE
## values
## sfc MULTIPOLYGON (((-87.46201 3...,...,MULTIPOLYGON (((-109.0511 4...
# convert to sf:
sf = st_as_sf(s_sf_y1)
plot(sf)
The North Carolina SIDS (sudden infant death syndrome) data set, introduced here, is an epidemiological data set containing population (births, BIR
), disease cases (SID
), and non-white births (NWBIR
) for two periods, indicated by the start years 1974 and 1979. The population and time information is spread over columns in a data.frame
:
nc = read_sf(system.file("gpkg/nc.gpkg", package="sf"))
nc.df = st_set_geometry(nc, NULL) # m is a regular, non-spatial data.frame
head(nc.df)
## # A tibble: 6 x 14
## AREA PERIMETER CNTY_ CNTY_ID NAME FIPS FIPSNO CRESS_ID BIR74 SID74 NWBIR74
## <dbl> <dbl> <dbl> <dbl> <chr> <chr> <dbl> <int> <dbl> <dbl> <dbl>
## 1 0.114 1.44 1825 1825 Ashe 37009 37009 5 1091 1 10
## 2 0.061 1.23 1827 1827 Alle… 37005 37005 3 487 0 10
## 3 0.143 1.63 1828 1828 Surry 37171 37171 86 3188 5 208
## 4 0.07 2.97 1831 1831 Curr… 37053 37053 27 508 1 123
## 5 0.153 2.21 1832 1832 Nort… 37131 37131 66 1421 9 1066
## 6 0.097 1.67 1833 1833 Hert… 37091 37091 46 1452 7 954
## # … with 3 more variables: BIR79 <dbl>, SID79 <dbl>, NWBIR79 <dbl>
We now mold this table into a 100 (counties) x 3 (categories) x 2 (years) array:
mat = as.matrix(nc.df[c("BIR74", "SID74", "NWBIR74", "BIR79", "SID79", "NWBIR79")])
dim(mat) = c(county = 100, var = 3, year = 2) # make it a 3-dimensional array
# set dimension values to the array:
dimnames(mat) = list(county = nc$NAME, var = c("BIR", "SID", "NWBIR"), year = c(1974, 1979))
# convert array into a stars object
(nc.st = st_as_stars(pop = mat))
## stars object with 3 dimensions and 1 attribute
## attribute(s):
## pop
## Min. : 0
## 1st Qu.: 8
## Median : 538
## Mean : 1657
## 3rd Qu.: 1784
## Max. :30757
## dimension(s):
## from to offset delta refsys point values
## county 1 100 NA NA NA NA Ashe,...,Brunswick
## var 1 3 NA NA NA NA BIR , SID , NWBIR
## year 1 2 NA NA NA NA 1974, 1979
after which we can replace the county names with the county geometries:
(nc.geom <- st_set_dimensions(nc.st, 1, st_geometry(nc)))
## stars object with 3 dimensions and 1 attribute
## attribute(s):
## pop
## Min. : 0
## 1st Qu.: 8
## Median : 538
## Mean : 1657
## 3rd Qu.: 1784
## Max. :30757
## dimension(s):
## from to offset delta refsys point
## sfc 1 100 NA NA NAD27 FALSE
## var 1 3 NA NA NA NA
## year 1 2 NA NA NA NA
## values
## sfc MULTIPOLYGON (((-81.47276 3...,...,MULTIPOLYGON (((-78.65572 3...
## var BIR , SID , NWBIR
## year 1974, 1979
Note that we have now two fields filled for the sfc
(simple feature geometry) dimension: refsys
and points
. What do they mean?
We can compute and plot the sums over the years for each county (1) and variable (2):
plot(st_apply(nc.geom, c(1,2), sum), key.pos = 4) # sum population over year
In order to meaningfully compare disease cases, we standardise incidence rates (SIR), by
\[\mbox{SIR}_i=\frac{c_i/p_i}{\sum_i c_i / \sum_i p_i}\]
with \(c_i\) the incidences and \(p_i\) the corresponding population of county \(i\). For SIR, the value one indicates equality to the mean incidence rate. We first compute the global incidence \(m\):
# split out BIR, SID, NWBIR over attributes:
split(nc.geom, 2)
## stars object with 2 dimensions and 3 attributes
## attribute(s):
## BIR SID NWBIR
## Min. : 248 Min. : 0.000 Min. : 1
## 1st Qu.: 1177 1st Qu.: 2.000 1st Qu.: 206
## Median : 2265 Median : 5.000 Median : 742
## Mean : 3762 Mean : 7.515 Mean : 1202
## 3rd Qu.: 4451 3rd Qu.: 9.000 3rd Qu.: 1316
## Max. :30757 Max. :57.000 Max. :11631
## dimension(s):
## from to offset delta refsys point
## sfc 1 100 NA NA NAD27 FALSE
## year 1 2 NA NA NA NA
## values
## sfc MULTIPOLYGON (((-81.47276 3...,...,MULTIPOLYGON (((-78.65572 3...
## year 1974, 1979
# sum by category:
(nc.sum = sapply(split(nc.geom, 2), sum))
## BIR SID NWBIR
## 752354 1503 240362
# denominator: mean incidence ratio, averaged over county & years:
(IR = nc.sum[2]/nc.sum[1])
## SID
## 0.00199773
# standardise each year/counte value by dividing over IR:
nc.SIR = st_apply(nc.geom, c(1,3), function(x) (x[2]/x[1])/IR)
plot(nc.SIR, breaks = c(0,.25,.5,.75,.9,1.1,1.5,2.5,3.5,5),
pal = rev(RColorBrewer::brewer.pal(9, "RdBu")))
#library(mapview)
#mapview(breweries)
See section 4.3.2 here.
Why don't we work on regular data.frame
or tbl_df
tables?
NA
or 0 filled)Why not?
NA
or 0 values)(g = read_stars(system.file("external/test.grd", package = "raster")))
## stars object with 2 dimensions and 1 attribute
## attribute(s):
## test.grd
## Min. : 138.7
## 1st Qu.: 294.0
## Median : 371.9
## Mean : 425.6
## 3rd Qu.: 501.0
## Max. :1736.1
## NA's :6022
## dimension(s):
## from to offset delta refsys point values x/y
## x 1 80 178400 40 +proj=sterea +lat_0=52.15... NA NULL [x]
## y 1 115 334000 -40 +proj=sterea +lat_0=52.15... NA NULL [y]
plot(g, col = viridis::viridis(11), breaks = "equal")
Note that:
offset
and delta
are filled, and geographic coordinates can be computed, e.g. for the x dimension, from 1-based cell index \(i\) by \[x_i = \mbox{offset}_x + (i-1) * \mbox{delta}_x\]delta
for y
is typically negative: going south row indexes increase while y coordinates decreaserefsys
(here: a deprecated Proj4 string), allowing a match to other world coordinates (e.g. plotting with leaflet/mapview)(g.sf = st_as_sf(g, na.rm = FALSE))
## Simple feature collection with 9200 features and 1 field
## geometry type: POLYGON
## dimension: XY
## bbox: xmin: 178400 ymin: 329400 xmax: 181600 ymax: 334000
## CRS: unknown
## First 10 features:
## test.grd geometry
## 1 NA POLYGON ((178400 334000, 17...
## 2 NA POLYGON ((178440 334000, 17...
## 3 NA POLYGON ((178480 334000, 17...
## 4 NA POLYGON ((178520 334000, 17...
## 5 NA POLYGON ((178560 334000, 17...
## 6 NA POLYGON ((178600 334000, 17...
## 7 NA POLYGON ((178640 334000, 17...
## 8 NA POLYGON ((178680 334000, 17...
## 9 NA POLYGON ((178720 334000, 17...
## 10 NA POLYGON ((178760 334000, 17...
plot(g.sf, border = 'grey', pal = viridis::viridis(9), nbreaks = 10)
A lot of raster information comes as multi-layer, the simplest being rgb images:
(r = read_stars(system.file("pictures/Rlogo.jpg", package = "rgdal"))) # the old one
## stars object with 3 dimensions and 1 attribute
## attribute(s):
## Rlogo.jpg
## Min. : 8.0
## 1st Qu.:181.0
## Median :255.0
## Mean :207.9
## 3rd Qu.:255.0
## Max. :255.0
## dimension(s):
## from to offset delta refsys point values x/y
## x 1 200 0 1 NA NA NULL [x]
## y 1 175 175 -1 NA NA NULL [y]
## band 1 3 NA NA NA NA NULL
plot(r, breaks = "equal")
Obviously, such data can be plotted as colors; we will first convert the rgb values to R color values:
(r.rgb = st_rgb(r))
## stars object with 2 dimensions and 1 attribute
## attribute(s):
## rgb3
## Length:35000
## Class :character
## Mode :character
## dimension(s):
## from to offset delta refsys point values x/y
## x 1 200 0 1 NA NA NULL [x]
## y 1 175 175 -1 NA NA NULL [y]
r.rgb[[1]][1:3,1]
## [1] "#FFFFFF" "#FFFFFF" "#FFFFFF"
before plotting it:
plot(r.rgb)
Multi-band data is much more common and goes beyond rgb; an exerpt with the 30m bands of a Landsat-7 image is found here:
L7file = system.file("tif/L7_ETMs.tif", package = "stars")
(L7 = read_stars(L7file))
## stars object with 3 dimensions and 1 attribute
## attribute(s):
## L7_ETMs.tif
## Min. : 1.00
## 1st Qu.: 54.00
## Median : 69.00
## Mean : 68.91
## 3rd Qu.: 86.00
## Max. :255.00
## dimension(s):
## from to offset delta refsys point values x/y
## x 1 349 288776 28.5 UTM Zone 25, Southern Hem... FALSE NULL [x]
## y 1 352 9120761 -28.5 UTM Zone 25, Southern Hem... FALSE NULL [y]
## band 1 6 NA NA NA NA NULL
Plotting this uses histogram stretching over all bands. I think of histogram stretching as HDR in monochrome attribute space: each grey tone covers the same area, color breaks are quantiles of the map layer:
plot(L7)
We can also do the stretching over each band individually, meaning there is no common key:
plot(L7, join_zlim = FALSE)
From these bands we can also make color or false color composites:
par(mfrow = c(1, 2))
plot(L7, rgb = c(3,2,1), reset = FALSE, main = "RGB") # rgb
plot(L7, rgb = c(4,3,2), main = "False color (NIR-R-G)") # false color
Suppose we create a 1-degree grid over parts of Europe:
bb = st_bbox(c(xmin = -10, xmax = 20, ymin = 40, ymax = 60), crs = 4326)
(x = st_as_stars(bb, dx = 1, dy = 1))
## stars object with 2 dimensions and 1 attribute
## attribute(s):
## values
## Min. :0
## 1st Qu.:0
## Median :0
## Mean :0
## 3rd Qu.:0
## Max. :0
## dimension(s):
## from to offset delta refsys point values x/y
## x 1 30 -10 1 WGS 84 NA NULL [x]
## y 1 20 60 -1 WGS 84 NA NULL [y]
We can plot the grid outline e.g. by:
#sf_use_s2(FALSE)
library(rnaturalearth)
ne <- ne_countries(returnclass = "sf", continent = 'europe') %>%
st_set_precision(1e8)
ne$pop_dens = units::set_units(ne$pop_est / st_area(ne), 1/(km^2))
plot(ne["pop_dens"], reset = FALSE, extent = bb)
pop = st_rasterize(ne["pop_dens"], x)
plot(st_as_sf(pop, na.rm = FALSE), add = TRUE, border = 'grey')
We can transform this grid e.g. to the ETRS89 / LAEA projection:
(pop.3035 = st_transform(pop, 3035))
## stars object with 2 dimensions and 1 attribute
## attribute(s):
## pop_dens [1/km^2]
## Min. : 0.00
## 1st Qu.: 0.00
## Median : 78.03
## Mean : 80.40
## 3rd Qu.:123.98
## Max. :417.65
## dimension(s):
## from to offset delta refsys point
## x 1 30 NA NA ETRS89-extended / LAEA Eu... FALSE
## y 1 20 NA NA ETRS89-extended / LAEA Eu... FALSE
## values x/y
## x [30x20] 2680703,...,5127800 [x]
## y [30x20] 1933849,...,4195484 [y]
## curvilinear grid
ne.3035 = st_transform(ne, 3035)
plot(pop.3035, border = 'grey', reset = FALSE)
plot(st_geometry(ne.3035), add = TRUE, border = 'yellow')
Note that the transformed grid is no longer a regular grid (it does not have offset
and delta
values for x
and y
), but a curvilinear grid: for every grid cell the longitude/latitude pair is stored. All the grid cell values are exactly retained, their geometry only changed reference system!
If we need to work this curvilinear grid to a regular grid in the new reference system, we can either warp it:
target_grid = st_as_stars(st_bbox(pop.3035)) # add dimensions/cell sizes etc here
(w = st_warp(pop, target_grid)) # or give only a target crs
## stars object with 2 dimensions and 1 attribute
## attribute(s):
## pop_dens [1/km^2]
## Min. : 0.00
## 1st Qu.: 0.00
## Median : 80.68
## Mean : 82.27
## 3rd Qu.:123.98
## Max. :417.65
## NA's :10148
## dimension(s):
## from to offset delta refsys point values x/y
## x 1 265 2680703 9241.65 ETRS89-extended / LAEA Eu... NA NULL [x]
## y 1 245 4195484 -9241.65 ETRS89-extended / LAEA Eu... NA NULL [y]
plot(w, border = 'grey', reset = FALSE)
plot(st_geometry(ne.3035), add = TRUE, border = 'yellow')
Suppose we had worked with population rather than population density, this warping would have caused a shift in total population; another approach would have been to use sf::st_interpolate_aw
for area-weighted interpolation for this.
A lot of Earth observation and modelling data from domains such as weather, climate, hydrology, oceanography come with a time dimension. Quite commonly, data cubes are stored in NetCDF (or HDF4, HDF5) formats. We have two examples; the first is a time series with two attributes, concerning monthly total precipitation, downscaled from CMIP:
(w <- system.file("nc/bcsd_obs_1999.nc", package = "stars") %>%
read_stars("data/full_data_daily_2013.nc"))
## pr, tas,
## stars object with 3 dimensions and 2 attributes
## attribute(s):
## pr [mm/m] tas [C]
## Min. : 0.59 Min. :-0.421
## 1st Qu.: 56.14 1st Qu.: 8.899
## Median : 81.88 Median :15.658
## Mean :101.26 Mean :15.489
## 3rd Qu.:121.07 3rd Qu.:21.780
## Max. :848.55 Max. :29.386
## NA's :7116 NA's :7116
## dimension(s):
## from to offset delta refsys point values x/y
## x 1 81 -85 0.125 NA NA NULL [x]
## y 1 33 37.125 -0.125 NA NA NULL [y]
## time 1 12 NA NA POSIXct NA 1999-01-31,...,1999-12-31
plot(w)
The second concerns a time series split over multiple files,
x = c(
"avhrr-only-v2.19810901.nc",
"avhrr-only-v2.19810902.nc",
"avhrr-only-v2.19810903.nc",
"avhrr-only-v2.19810904.nc",
"avhrr-only-v2.19810905.nc",
"avhrr-only-v2.19810906.nc",
"avhrr-only-v2.19810907.nc",
"avhrr-only-v2.19810908.nc",
"avhrr-only-v2.19810909.nc"
)
# see the second vignette:
# install.packages("starsdata", repos = "http://gis-bigdata.uni-muenster.de", type = "source")
file_list = system.file(paste0("netcdf/", x), package = "starsdata")
(y = read_stars(file_list, quiet = TRUE))
## stars object with 4 dimensions and 4 attributes
## attribute(s), summary of first 1e+05 cells:
## sst [°*C] anom [°*C] err [°*C] ice [percent]
## Min. :-1.80 Min. :-4.69 Min. :0.110 Min. :0.010
## 1st Qu.:-1.19 1st Qu.:-0.06 1st Qu.:0.300 1st Qu.:0.730
## Median :-1.05 Median : 0.52 Median :0.300 Median :0.830
## Mean :-0.32 Mean : 0.23 Mean :0.295 Mean :0.766
## 3rd Qu.:-0.20 3rd Qu.: 0.71 3rd Qu.:0.300 3rd Qu.:0.870
## Max. : 9.36 Max. : 3.70 Max. :0.480 Max. :1.000
## NA's :13360 NA's :13360 NA's :13360 NA's :27377
## dimension(s):
## from to offset delta refsys point values x/y
## x 1 1440 0 0.25 NA NA NULL [x]
## y 1 720 90 -0.25 NA NA NULL [y]
## zlev 1 1 0 [m] NA NA NA NULL
## time 1 9 1981-09-01 02:00:00 CEST 1 days POSIXct NA NULL
This variable contains a singular dimension, zlev
, which we can remove using adrop
:
(z = adrop(y))
## stars object with 3 dimensions and 4 attributes
## attribute(s), summary of first 1e+05 cells:
## sst [°*C] anom [°*C] err [°*C] ice [percent]
## Min. :-1.80 Min. :-4.69 Min. :0.110 Min. :0.010
## 1st Qu.:-1.19 1st Qu.:-0.06 1st Qu.:0.300 1st Qu.:0.730
## Median :-1.05 Median : 0.52 Median :0.300 Median :0.830
## Mean :-0.32 Mean : 0.23 Mean :0.295 Mean :0.766
## 3rd Qu.:-0.20 3rd Qu.: 0.71 3rd Qu.:0.300 3rd Qu.:0.870
## Max. : 9.36 Max. : 3.70 Max. :0.480 Max. :1.000
## NA's :13360 NA's :13360 NA's :13360 NA's :27377
## dimension(s):
## from to offset delta refsys point values x/y
## x 1 1440 0 0.25 NA NA NULL [x]
## y 1 720 90 -0.25 NA NA NULL [y]
## time 1 9 1981-09-01 02:00:00 CEST 1 days POSIXct NA NULL
which we can for instance plot with ggplot:
library(ggplot2)
library(viridis)
## Loading required package: viridisLite
## Loading required package: viridisLite
library(ggthemes)
ggplot() +
geom_stars(data = z[1], alpha = 0.8, downsample = c(10, 10, 1)) +
facet_wrap("time") +
scale_fill_viridis() +
coord_equal() +
theme_map() +
theme(legend.position = "bottom") +
theme(legend.key.width = unit(2, "cm"))
A more challenging example involving Landsat 8 imagery is shown at the end of this tutorial.
Subsetting is done using [
, where the first argument concerns attributes, the others subsequent dimensions.
y[2] # second attribute
## stars object with 4 dimensions and 1 attribute
## attribute(s), summary of first 1e+05 cells:
## anom [°*C]
## Min. :-4.69
## 1st Qu.:-0.06
## Median : 0.52
## Mean : 0.23
## 3rd Qu.: 0.71
## Max. : 3.70
## NA's :13360
## dimension(s):
## from to offset delta refsys point values x/y
## x 1 1440 0 0.25 NA NA NULL [x]
## y 1 720 90 -0.25 NA NA NULL [y]
## zlev 1 1 0 [m] NA NA NA NULL
## time 1 9 1981-09-01 02:00:00 CEST 1 days POSIXct NA NULL
y[,1:10,1:12] # x/y region
## stars object with 4 dimensions and 4 attributes
## attribute(s):
## sst [°*C] anom [°*C] err [°*C] ice [percent]
## Min. :-1.280 Min. :0.4800 Min. :0.3 Min. :0.7500
## 1st Qu.:-1.150 1st Qu.:0.6200 1st Qu.:0.3 1st Qu.:0.7800
## Median :-1.100 Median :0.6900 Median :0.3 Median :0.8000
## Mean :-1.098 Mean :0.6703 Mean :0.3 Mean :0.7996
## 3rd Qu.:-1.040 3rd Qu.:0.7300 3rd Qu.:0.3 3rd Qu.:0.8200
## Max. :-0.880 Max. :0.8300 Max. :0.3 Max. :0.8500
## dimension(s):
## from to offset delta refsys point values x/y
## x 1 10 0 0.25 NA NA NULL [x]
## y 1 12 90 -0.25 NA NA NULL [y]
## zlev 1 1 0 [m] NA NA NA NULL
## time 1 9 1981-09-01 02:00:00 CEST 1 days POSIXct NA NULL
y[,,,1] # zlev
## stars object with 4 dimensions and 4 attributes
## attribute(s), summary of first 1e+05 cells:
## sst [°*C] anom [°*C] err [°*C] ice [percent]
## Min. :-1.80 Min. :-4.69 Min. :0.110 Min. :0.010
## 1st Qu.:-1.19 1st Qu.:-0.06 1st Qu.:0.300 1st Qu.:0.730
## Median :-1.05 Median : 0.52 Median :0.300 Median :0.830
## Mean :-0.32 Mean : 0.23 Mean :0.295 Mean :0.766
## 3rd Qu.:-0.20 3rd Qu.: 0.71 3rd Qu.:0.300 3rd Qu.:0.870
## Max. : 9.36 Max. : 3.70 Max. :0.480 Max. :1.000
## NA's :13360 NA's :13360 NA's :13360 NA's :27377
## dimension(s):
## from to offset delta refsys point values x/y
## x 1 1440 0 0.25 NA NA NULL [x]
## y 1 720 90 -0.25 NA NA NULL [y]
## zlev 1 1 0 [m] NA NA NA NULL
## time 1 9 1981-09-01 02:00:00 CEST 1 days POSIXct NA NULL
y[,,,,3:5] # time
## stars object with 4 dimensions and 4 attributes
## attribute(s), summary of first 1e+05 cells:
## sst [°*C] anom [°*C] err [°*C] ice [percent]
## Min. :-1.80 Min. :-4.760 Min. :0.110 Min. :0.010
## 1st Qu.:-1.21 1st Qu.:-0.140 1st Qu.:0.300 1st Qu.:0.740
## Median :-1.07 Median : 0.480 Median :0.300 Median :0.830
## Mean :-0.39 Mean : 0.165 Mean :0.297 Mean :0.764
## 3rd Qu.:-0.27 3rd Qu.: 0.690 3rd Qu.:0.300 3rd Qu.:0.870
## Max. : 8.29 Max. : 3.910 Max. :0.480 Max. :1.000
## NA's :13360 NA's :13360 NA's :13360 NA's :27482
## dimension(s):
## from to offset delta refsys point values x/y
## x 1 1440 0 0.25 NA NA NULL [x]
## y 1 720 90 -0.25 NA NA NULL [y]
## zlev 1 1 0 [m] NA NA NA NULL
## time 3 5 1981-09-01 02:00:00 CEST 1 days POSIXct NA NULL
Subsetting can also be used to shortcut intersections, as in
x = st_as_stars() # global, 1 degree grid
plot([ne])
where the area intersecting with ne
is selected (masked / cropped); note that ne
crosses the dateline, and a southern country is included.
st_crop
crops a raster, possibly masking (NA-ing) cells outside a given polygonal area.
Tidyverse verbs are partly supported by stars
, see this vignette:
command | meaning |
---|---|
slice |
select dimension values using index |
filter |
select dimension values using dimension values |
pull |
pull out an attribute |
select |
select one or more attributes |
mutate |
create new attributes based on existing ones |
stars
has an aggregate
method that lets you do spatial or temporal aggregations of stars
objects, such as averaging over a set of polygons.
st_extract
extracts pixel values at a set of given POINT
locations.
We saw an example of st_rasterize
above, which rasterizes polygon data to stars
rasters. st_as_sf
does the reverse. st_as_sf
can create points for raster cells, or square polygons, or join raster cells with identical cell values ("polygonize").
When opening a very large dataset, it is not being read entirely in memory, but rather a handle to the file, along with the dimension metadata is returned. Suppose we want to read the four 10m bands in a Sentinel-2 tile, provided by package starsdata
:
granule = system.file("sentinel/S2A_MSIL1C_20180220T105051_N0206_R051_T32ULE_20180221T134037.zip",
package = "starsdata")
s2 = paste0("SENTINEL2_L1C:/vsizip/", granule,
"/S2A_MSIL1C_20180220T105051_N0206_R051_T32ULE_20180221T134037.SAFE/MTD_MSIL1C.xml:10m:EPSG_32632")
(p = read_stars(s2))
## stars_proxy object with 1 attribute in file:
## $`MTD_MSIL1C.xml:10m:EPSG_32632`
## [1] "[...]/MTD_MSIL1C.xml:10m:EPSG_32632"
##
## dimension(s):
## from to offset delta refsys point values x/y
## x 1 10980 3e+05 10 WGS 84 / UTM zone 32N NA NULL [x]
## y 1 10980 6e+06 -10 WGS 84 / UTM zone 32N NA NULL [y]
## band 1 4 NA NA NA NA B4,...,B8
We can control whether a stars_proxy
object is returned by setting e.g. proxy = TRUE
; the current default is to return proxy objects when the number of cells is larger than \(10^8\).
Operations on proxy objects are lazy, that means that reading data and computing are postponed to the moment grid cells are needed (i.e. to plot, to write, or convert to stars
). For instance in the following sequence,
ndvi = function(x) (x[4]-x[1])/(x[4]+x[1])
(p.ndvi = st_apply(p, c("x", "y"), ndvi)) # doesn't actually do anything, yet
## stars_proxy object with 1 attribute in file:
## $`MTD_MSIL1C.xml:10m:EPSG_32632`
## [1] "[...]/MTD_MSIL1C.xml:10m:EPSG_32632"
##
## dimension(s):
## from to offset delta refsys point values x/y
## x 1 10980 3e+05 10 WGS 84 / UTM zone 32N NA NULL [x]
## y 1 10980 6e+06 -10 WGS 84 / UTM zone 32N NA NULL [y]
## band 1 4 NA NA NA NA B4,...,B8
## call_list:
## [[1]]
## st_apply(X = X, MARGIN = MARGIN, FUN = FUN, .fname = .fname)
## attr(,".Environment")
## <environment: 0x55cd53bd57d0>
plot(p.ndvi)
the actual order of operations that is carried out is:
plot(p.ndvi)
is called, nothing has been computed yetplot.stars_proxy
evaluates what needs to be done:
ndvi
is applied pixel-wise, it can downsample (read at lower resolution) before applying nvdvi
This processing pattern is familiar to those who have worked with e.g. Google Earth Engine.